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A numerical method is called robust if it does not require tuning. Two
different approaches to robustness are described. First, existing energy
and enstrophy conserving space discretizations are combined with
new nonlinear Runge—Kutta schemes that conserve either energy or
enstrophy in the inviscid unforced case. This guarantees unconditional
stability of long-term integrations, even for the explicit variants. The
explicit nonlinear Runge—Kutta schemes are inaccurate (but stable) if
the related standard Runge—Kutta formula is unstable, Fortunately,
the nonlinear schemes yield a parameter which can be used to signal
inaccuracies and to adapt the timestep such that results are accurate.
However, as they are hased on symmetric space discretizations, these
methods stili require the ad hoc tuning of an artificial viscosity to
suppress numerical spatial oscillations. The second approach is to con-
struct robust space discretizations {Jacobians) using the grid-aligned
essentially non-oscillatory {ENQ) technique. ENO Jacobians based on
the conservation form of the vorticity equation generate spikes near
stagnation points. Only fifth and lower order ENQ Jacobians based on
the advection form of the vorticity equation suppress all instabilities
and oscillations without tuning if a global Lax-Friedrichs modifica-
tion is used. A preliminary comparisen is made with a tuned Arakawa
Jacobian. © 1994 Academic Press, Inc.
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T e

1. INTRODUCTION

Robust numerical schemes are proposed for the direct
simulation of two-dimensional incompressible turbulence.
Foilowing Roe [14], a scheme is called robust if accurate
and aumerically stable results are obtained without the need
to “tune” some of its parameters for each new simulation.
Robustness is a desirable property because of the
complexity and expense of direct turbulence simulations.
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The continuous problem that will be considered is the
vorticity equation:

a—q+J(IJI, =2+ F,

dt (1)

=V + f, (2)

on a simply connected spatial domain . Here y(x, y, 1)
denotes the streamfunction, ¢(x, y,!) is the potential
vorticity, while x, y, and ¢ denote the space and time coor-
dinates. The given function f{x, ¥) can be nonzero in, for
example, a quasi-geostrophic (geophysical) context, where
it incorporates effects of bottom topegraphy and the spatial
variation of the Coriolis parameter, cf. Pedlosky [13].
The “Jacobian” J{y, g) represents advection of potential
vorticity and is defined as

% denotes a dissipation term (e, £ =WVg), and
F(x,y, 1) a given forcing term. For simply connected
domains homogeneous Dirichlet boundary conditions can
be enforced on the streamfunction:

Ylan=0. (3)

Depending on the order of 2 additional “viscous” boundary
conditions are required. This paper will mainly focus on the
case # =0 and % “small”, i.e, freely decaying turbulent
flows. If 2 = # =0, system {1)}-(3) conserves energy E and
enstrophy V-

E()=] $IV1P 4,

V{ty= L’ 17 dQ.
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Due to these conservation properties, energy must cascade
to the large scales while enstrophy cascades to the smallest
scales (Pedlosky [13]).

In many turbulence simulations the physical viscous
length scale cannot be resolved by the numericai model.
From a numerical viewpoint this means that effectively an
inviscid vorticity equation is simulated, which usually
necessitates the introduction of an artificial (numerical)
dissipative mechanism. Since energy cascades to the larger
scales, statistically accurate results may still be obtained if
enough turbulent length scales are reproduced. However,
usually the spatial meshwidth cannot be chosen much
smaller than the scale of the smallest important eddies; see,
for example, Wolff er al. {207]. Therefore accurate statistics
are only obtained if the numerical scheme reproduces as
many scales of motion as possible for a given spatial
resolution. Most numerical methods are capable of this only
after elaborate tuning, i.e., they are not robust.

Two different approaches are followed in an attempt to
obtain robust methods. The first approach, described in
Section 2, is to start from symmetric space discretizations
that conserve semidiscrete analogues of the energy and
enstrophy in the inviscid unforced case. Without at least one
conservation property of this type, symmetric schemes are
generally unstable and need tuning of an ad hoc artificial
viscosity to suppress the instability (Sadourny [15])
Important examples of energy and enstrophy conserving
space discretizations are the Arakawa [ 1] Jacobian and its
generalizations by Salmon and Talley [16]. The resulting
semidiscrete schemes are guaranteed numerically stable and
also have correct spectral directions of the semidiscrete
enstrophy and inverse energy cascades. If semidiscrete
enstrophy is not conserved (but energy is}, then the spectral
energy distribution will evolve incorrectly, cf. Arakawa [2].
Arakawa also showed that enstrophy conserving schemes
violating the energy conservation principle do not have such
disadvantages. Therefore discrete enstrophy conservation
has a higher priority than energy conservation.

Economical energy and/or enstrophy conserving time
discretizations have not been reported in literature yet. The
enstrophy conserving implicit midpoint rule mentioned by
Arakawa [27 scems too expensive. In geophysical fluid
dynamics one commonly uses the nonconservative “leap
frog” time-stepping method, stabilized by an ad hoc techni-
que such as time averaging or the periodic use of a “one-
step” method (Sadourny [15]). No a priori guarantee of
stability can be given. By generalizing results of Dekker
and Verwer [5], I will construct new explicit energy or
enstrophy conserving time discretizations. Combining these
methods with any conservative space discretization yields
Jully discrete conservative methods that are guaranteed
numerically stable.

Unfortunately, even these methods are not fully robust as
they are based on symmetric space discretizations. These
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run into problems due to the indefinite intensification
of vorticity gradients in inviscid turbulent flows
(Pedlosky [137]). Oscillations will emerge near large
vorticity gradients and ultimately lead to the so-called equi-
partitioning of enstrophy (Bennet and Haidvogel [3]). To
suppress these oscillations an artificial viscosity is needed.
For practical applications this is unsatisfactory since the
minimally required amount of viscosity must be found by
trial and error, while using a safe (large) amount leads to
computational inefficiency.

In Section 3 an entirely different, second approach to
robustness 15 described. The essentially non-oscillatory
(ENO) technique of Shu and Osher [17] is used to
construct “ENO-Jacobians.” Only one variant is found that
automatically introduces the minimally required damping
near large vorticity gradients such that both numerical
stability and accuracy are ensured. No “tuning” of an
artificial viscosity is needed. A qualitative comparison is
made with the Arakawa Jacobian.

2. CONSERVATION OF DISCRETE ENERGY
AND ENSTROPHY

2.1. The Semidiscrete System

The semidiscrete system is obtained formally by space
discretization of (1), (2) and will be denoted as:

dq
wff—d?—Q(q, ¥, 1), (4}

PV = .#q—f, (5)

with & the discrete Laplacian and .# the “mass matrix.”
For the semidiscrete variables a vector notation is used. For
example, the vector ¥ =¥{¢} is a continuous function of
time and has the gridpoint values or modal amplitudes of
the streamfunction as its components. The precise meaning
of the components depends, of course, on the type of
discretization method actually used.

It is assumed that (4}, (5) conserves analogues of both
energy and enstrophy in the inviscid unforced case, while an
inner product -, - ) exists such that these quantities can be
written as

V=1<{q,.#q), (6}
E=—L1(¥, #q-1>. (7)
Further it is assumed that
dvidi={q, 0>, (8)
dEfdt= — (¥, Q>, 9)
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and that the inner product satisfies

(A, HBy=(H#AB)

Galerkin methods usually lead to a semidiscrete system
with the above properties if the evaluation of the integrals
occurring in these methods is exact. The use of quadrature
formulas (such as lumping) is allowed if it is done in the way
of Salmon and Talley [16].

However, for some types of boundary conditions it is
impossible to arrive at a system with all of the above proper-
ties. An important example is the viscous system with “no-
slip” boundary conditions, ie., the normal derivative dyr/dn
prescribed at parts of the boundary (Tezduyar ez al. [ 18]).
In this case the vorticity equation (4) does not hold for
nodes corresponding to the no-slip boundary segments.
There the evolution of q is obtained from (5} instead of (4):
the streamfunction equation holds on these segments too.
Note that the boundary components of f then depend on the
prescribed dyr/dn. Because @ is not fully defined at the
boundary each nontrivial usage of boundary values of Q
in inner products is invalid. So, assumption (8) cannot
be expected to hold. Consequently, if no-slip boundary
conditions are prescribed, the “enstrophy comnserving”
Runge-Kutta schemes derived below cannot be applied.
The energy conserving schemes are still valid since they do
not depend on the boundary values of @, due to boundary
condition (3).

Space discretizations with the abovementioned properties
generally yield a Q{q, ¥, 7) that is differentiable infinitely
many times with respect to its arguments. Therefore, the
solution vectors q(¢) and ¥(¢) have the same property with
respect to time ¢. This makes high order time discretizations
of (4}, (5) well founded in a formal sense.

forall A,B.

2.2. Energy or Enstrophy Conserving Time Discretizations

Conservative nonlinear Runge-Kutta time discretiza-
tions for (4), (5) are derived by extending Example 10.3.8
of Dekker and Verwer [5]. They have shown how the
coefficients of the classical fourth-order scheme can be
modified such that (in the present terminology ) enstrophy is
conserved. This idea is extended to any standard Runge-
Kutta methoed of arbitrarily high order of accuracy, such
that it conserves either energy or enstrophy. Its main
application is to explicit schemes but it applies to implicit
ones as well.

The standard s-stage Runge-Kutta method is specified by
constant coefficients a,, 6, ¢, with 1 </, j < s/and yields for
system (4), (5) the approximations q"*'=q(t,.;) and
kSR d AR

+ Z biF;‘s

i=t

l(lﬂqn+ 1 —-f),

MG+ = g (10)

wrl o g (i1)
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where

F,=41Q(q,,¥,, 1, + ¢, 41),

MY = ﬂq+2 a;F;,

i=1

ir ?1

| S 5: a; & 'F,,

f=1

‘Pi=,9?_1(‘j{q,.—f)-_-

thy1=1t,+ 4L (12)

This scheme is explicit if a,,= 0 for j > i. Note that (4), (5) is
formally a so-called differential-algebraic system with per-
turbation index 1 {(Hairer et al. [8]) for which the
Runge-Kutta method (10)-{12) obtains its classical order
of accuracy.

All inverses ¥ 'F; satisfy homogeneous Dirichlet
boundary conditions, because at each stage the streamfunc-
tion ¥, must satisfy (3). In the viscous case with no-slip
boundary conditions the notation involving .% ! is not
very precise because (5} holds for boundary nodes too. So,
formally, % is not invertible in this case. The notation as in
{(11) should then be interpreted as follows. The interior
restriction of (5) determines ¥"*' completely because the
interior restriction of .#q” ' follows from (10). The unused
equations in (5), together with (10), determine q"*".

The standard scheme (10) is modified to

Hq" T = Hq"+y" 4q",  where Aq”si b;F,,
- {13)
which results in
| SR TR 22
where AW”EZ“Aq"=ibi3’“Ff. (14)

i=1

Obviously for y” =1 the standard scheme {10) is recovered.
The purpose of the form (13) is to make y" solution-
dependent, such that either enstrophy or energy is conserved.
Expressions for y" are derived as follows, The discrete
energy E”! and enstrophy V"t at r=r,,, can be
expressed in known quantities and y”* by using (6), (7), (13),
and (14):

Vn+i,_Vn+,y {<q Aqn>+ ']_,”(Aq M AQ")}
(15)

E"+1=E"—%y"{<d'~l’", ./”qn—f>

+ W, 4975 +y" (AW, 4975 ) (16)
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For inviscid unforced flows either V" t!'=V"or E"*'=E"
can be enforced. Each of these requirements yields a quad-
ratic equation for 9" with nontrivial solution, respectively:

2¢q", 49¢")
yV <Aqn’ﬂ414qn>’ ( )
_ LAY, g 15+ (¥ 497D (18)

})E (A"Pn,Aqn,\

There are also trivial solutions y” =0, since for this y” Eq.
{(13) reduces to q"* ' = q". Note that the applicability of (17)
and (18) is not limited to Runge-Kutta type methods.

For viscous andfor forced flows the y* given in (17) and
(18) cannot be used since they would (unjustly) lead to
exact enstrophy or energy congervation in these cases also.
Alternatives for (17), (18) that are accurate in these cases
too are obtained by generalizing the approach of Dekker
and Verwer [5]. Combining the identities

(q",dq">= Z bs(‘ln F,>— z bi{q,—q" F,

i=1 i=1

YAy = b (¥ ED— Y b, (¥~ ¥ F,

i=1 i=1

with (15) and (16) gives

V't Vit 3 b (g FO — 172, (17),

i=1

(19)

En+! =E"—y" Z b (VL FD+ %}’HQE('Y"L (20)

i=1

where

2,(y"}y=2 _Z bi<q;—q" F>—y"(4q", A7 Aq"), (21)

i=1
2" =W, 4q7) — (AW, A1)

+2 ) b(Y, YL F) =y (aY", 49", (22)

The zeros of the functions 2, and 2, are, respectively,

. 2,(1)
EARVT OV AV TN *)
yi=14—2£0) (24)

{4W", Aq">’
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Therefore Eqs. (19) and (20} become

rrl=viayl ¥ b<en F)),

i=1

if y"=y%, (25)

Bt =B =37 ¥ bi(YLFD,
i=1

i=

if y"=y%. (26)
These still reduce to enstrophy or energy conservation in the
inviscid unforced case because then (8), (9) result in

{q,Q(q, ¥.1)>=0

<‘P9 Q(q, v, f)>=0 (27)

} for allg, ¥.

Also, in this case expressions (17) and (23) are equivalent,
as are (18) and (24). However, (23) and (24) may be
preferable since they seem less sensitive to rounding errors:
their numerator and denominator both contain only terms
of @(d4¢?), whereas the numerators in (17}, (18) contain
@i{A4r) terms also (which cancel in exact arithmetic). For
viscous and/or forced flows Egs. (25) and (26) are accurate
Runge-Kutta type approximations of the continuous
enstrophy and energy behavior, respectively, if 3"~ 1; see
also Eq. {(29) and Remark 2 below. For viscous unforced
flows the semidiscrete system is usually monotonous {5] in
the sense that properties (27) change into

{q, 2(q, ¥, 1)> <0

(¥, Q(q, ¥, 1)) ;0} for all q, ¥.

(28)

Usage of (23) or (24) for 7" then yields F**!'< V" and
E"*'< E", respectively; ie., the discrete enstrophy or
cnergy decreases as in the analytic system. However, this is
true only if each b, in (13} is nonnegative and the timestep
is limited such that " >0, which is a sensible restriction
anyway (Dekker and Verwer [5]).

Next, the accuracy of the nonlinear schemes (13), (23)
and (13), (24) is considered.

LemMa. Each standard Runge—Kutta method (10)-(12)
that is rth-order accurate for systems of equations satisfies:
2,(1)=0(Ar" 1), as well as 2,.(1)= @A *").

Proof. Apply ome step of the standard s-stage
Runge—Kutta scheme to the extended system,
d Jﬁq Q(q, ‘Ps t)
d_[ v = (q, Q(qs .Pa t)> » t;tnn
e _<‘P7 Q(q7 ‘P, t))
with initial condition,
q(,) q"
v(t,) |= 34q" #q">
e(tn) _12<‘p"s "#q”_f>
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This yields
Mg"! Mq"
et o=l e g7
gn+l _%(\Pn,ﬂqn_f>

E;

+ Z b, {q.F> |,
SRS 78

(29)

with g, ¥;, and F, given by (12). Due to assumptions {8),
(9) the exact solutions of the additional equations are
v(r)=3<q(s), .#q(2)),
e(t)= —3{¥(r), Mq(1) -1 ).

The Runge-Kutta scheme is assumed to be rth-order
accurate, which means that q"+!, ¥+ "+ and ¢"*! can
only deviate by #(4:"+')} from the exact solution q{z,, ,),
W{r, . 1) v{f,. 1), e(t,, 1) This can be exploited as

V" h=o(, L )+ 04 )

=34q(tp i) AQUL, )Y+ O(d7H)
:%(q"+1’ qu+l>+@(Atr+l),

and

e"tl=e(t,, )+ 0(4r+1)
__%<‘P(trr+l)’ Mq(tn+l)_f> +0(Atr+l)
— LWt gt = + 04 ),

Together with (29) these relations give
ERCHARY 1 S

= 1§<qn’ Hq" 5 + z b, {9, F>+ @(Alr+]),

=1

_%<1Pn+1, .,ﬂq"""l-—f}

= — 3V Mq" > =Y 5 F,F)+04rt).

i=1

Combining these relations with (19}, (20} for y" =1 proves
the lemma. |

Since {AqQ", # ' 4q">=0(47") and {AV¥P", Aq") =
@(41%) it follows from (23), (24) and the lemma that
Pp=1+0(4r""),

ve=14+0(4r""). (30)

133

These estimates are the sharpest possible because the
estimates in the proof of the lemma are sharp. They have
been verified by numerical refinement sequences for the
semidiscrete system described in Section 2.4. These show
that the nonlinear versions of the fourth-order Kutta-
Simpson three-eighth rule [ 5] as well as the classical fourth-
order Runge-Kutia scheme lead to (30) with r=4. The
fifth-order components of the (4,5)-pairs of England and
Fehlberg [11] both yield (30) with r=5.

The order of accuracy of the nonlinear schemes (13}, (23)
and (13), (24) can be derived from (30) as follows.
The Taylor expansion of the local truncation error of a
Runge-Kutta scheme with coefficients 4, b, ¢, applied

with a stepsize f,, ., — 7, = z/l\t, is
MY, ) — Mg
=41 (1 3 B,) U
i=1

+2

(=2

AP P4, b, #).

Herein P contains derivatives of the solution at ¢ = ¢,,, and
is polynomial in the Runge-Kutta coefficients 4, b o £ sBe,
for example, Lambert [11]. The standard Runge—Kutta
method (10)-(12) is assumed to be rth-order accurate,
which means that the local truncation error is @(d4¢"+?).
The constant coefficients of the standard scheme therefore
satisfy

PYa b, c)=0, for 2<i<r,
s (31)
1— % 6,=0.

i=1

The accuracy of the nonlinear modification (13) depends on
the definition of ¢, , ;. There are two relevant possibilities
{(Dekker and Verwer [5])

1. The stapdard definition in (12) is retained:
{ay1=1,+ At. So, compared to the Taylor expansion of the
standard scheme, only the change b,=y"b, is made. With
(30), (31), and the elementary properties of polynomials we
find

POa b,c)=0(ar="),  for 2<i<r,

1- 3 b=0(4r-").
i=1

The local truncation error is, therefore, 0{Ar™), leading to a
global order of accuracy of only r— 1.

2. The stepsize is modified by y™:

t,oi=t,+7" 4L (32)
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Note that the Taylor expansion is done with respect to

~~

At=7" At. The nonlinear scheme must therefore be
PN

rewritten in terms of A¢ in order to obtain the coefficients as
they occur in the expansion. An inspection of (11}-(13)
yields simply

Pt

ﬁ{,:au/'y" = ay+ (D(Atrml),
b,=b,
Gi=c,fy =c;+ @(2;'*‘).

This gives with {31)

PG, B, &)=0(Ar-"), for 2<i<r,
1-% b,=0,
i=1

which leads to a local truncation error of @(4¢ %'} and a
global error of @(Ar").

As already concluded earlier by Dekker and Verwer [5]
for their enstrophy conserving version of the classical
Runge-Kutta scheme, the order of the nonlinearly modified
schemes remains high only if the new interpretation (32) is
given to the discrete variables "' = q(¢, . ) and ¥"* ' x>
‘P(ln+ 1)'

The fully discrete nonlinear schemes {13), (23) and {(13),
(24} exactly conserve enstrophy and energy, respectively, in
the inviscid unforced case and are, therefore, uncondi-
tionally stable with respect to “enstrophy/encrgy-norms.”
This is true even for the explicit variants. However, in prac-
tice the timestep should not be taken too large because the
explicit nonlinear schemes yield inaccurate (but stable)
results as soon as the standard explicit scheme (10} on
which they are based would become unstable, see Section 2.4.

Remark 1. In some situations the expressions for y}
can be simplified. The first two terms in (22) cancel if % is
symmetric and the inner product is Euclidian. If these
conditions hold, also {18) may be simplified to

B 2<|[1”5Aqﬂ>
Ye= (A‘P",Aq")

Remark 2. The additional local truncation error intro-
duced by the nonlinear modification (13} in the q-evolution
is proportional to |1 —y"| 4> = @(Ar+') if (32) is used,
otherwise it is proportional to |1 —y"| 4r= @(41"). A disad-
vantage of the nonlinear schiemes seems to be that this error
occurs instantly throughout the whole spatial domain even
in the case that large temporal discretization errors would
be spatially localized in the standard scheme (10). However,
any error in (10) has an instantaneous global effect, too,
through the streamfunction equations in (11) and (12).
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Further note that the standard scheme is not accurate either
if {1 —v7| is “large™; (23), (24) show that |1 —y*| measures
the deviation of the standard scheme’s enstrophy/energy
evolution (given by (19), (20) with y"=1) from a direct
Runge-Kutta approximation (29) of the semi-discrete
enstrophy/energy evolution, If |1 —9"| is large then the
standard scheme may even become unstable. By using one
of the nonlinear variants (13}), (23) or (13), (24) stability can
still be guaranteed but a higher accuracy can not (except for
accuracy of energy and/or enstrophy evolutions).

Remgrk 3. Given the asymptotic behavior (30) of the
y"-parameters it seems straightforward to implement an
automatic timestep adaptation that reduces the error that is
proportional to |1 —-+"| to a specified tolerance at no extra
cost. Maximization of the timestep (in order to reach an
equilibrium quickly) scems possible by increasing it until,
say, |1 —- 9" =0.01.

Remark 4. For inviscid unforced flows expressions
{17), (18) also satisfy (30). This can be proven for any rth
order time-discretization using a simplified version of the
lemma.

2.3. Concurrent Conservation of Energy and Enstrophy

An attempt has been made to construct explicit nonlinear
Runge-Kutta methods that conserve both energy and
enstrophy in the inviscid unforced case. Conservation of two
quantities seems to require the introduction of two solution-
dependent coefficients y,, y,. The investigated schemes all
had the form

MG = M+, Aq]+ 7, A5, (33)
where A4q] and Aq5 are different summations of the F,,
while their sum equals the 4q" given in (13). The standard
Runge-Kutta formula (10} is recovered for v, =9,=1. 1t
can be shown that the discrete enstrophy V"' and energy
E"*' at t=1,,, concurrently satisfy relations similar to
{25), (26) if y, and y, satisfy a coupled system of two
quadratic scalar equations of the form:

Ay P+ Ay v+ Ay + Ayyy + Asy, =0, (34)
By, P+ Byyyya+ Balya ) + By + 857, =0.

As a result, fully discrete energy as well as enstrophy are
conserved in the inviscid unforced case. Both diminish if the
semidiscrete system is monotonous in the sense of (28).
The derivation and detailed form of system (34) have
been omitted since it turns out to become ill-conditioned in
actual simulations of the semidiscrete system described in
Section 24. This was observed for various types of
splittings {33) of the fourth- and fifth-order Runge-Kutta
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methods mentioned earlier. Therelore, nonlinear schemes of
the type (33}, {34) do not seem of practical use.

Remark 1. The trivial solution of system (34} is, as
anticipated, y,=7y,=0. The more relevant solution
y1xy,% | among the three remaining root-pairs has been
determined in two ways. By eliminating (for instance) y,, a
cubic equation for y, is obtained which can be solved
analytically. This approach {s extremely sensitive to
rounding errors. The second method, Newton iteration
applied directly on system (34), is less prone to rounding
errors but still tends to diverge. All calculations were done
with 16 significant decimal digits.

Remark 2. Refinement sequences suggest that if (33),
(34} is based on fonrth-order Runge-Kutta methods,
P1, Y2 =1+ 0(4¢%), while fifth-order methods lead to
., 72 =1+ @(4r*). This shows another disadvantage of
scheme (33), (34). It will only be second- or third-order
accurate, respectively, because a redefinition of the fully
discrete variables such as (32) does not seem possible.

24, Numerical Results

The performance of the nonlinear energy or enstrophy
conserving variants of the classical fourth-order
Runge-Kutta (RK) scheme has been investigated with a
test problem similar to one used carlier by Arakawa [2].
The inviscid unforced system (1)—(3) with f =0 is solved on
the unit square Q=(0,1)x(0,1). The initial stream-
function is

Y(x, y, t=0)= —Cy sin 8zx{sin 8zy + i sin 167y},
i6
(35)

where the positive constant Cy = 1/1390.8 is chosen such
that initially |g| . = 1.

The spatial domain £ is covered by an equidistant set of
gridpoints {{x;, y;)}, with x,=i Ax and y,= j Ay, where Ax
and Ay denote the given gridpoint distances. The employed
semidiscrete form (4) of the vorticity equation is that
derived in Example A of Salmon and Talley [16]. It consists
of the second-order Arakawa Jacobian in interior points
and a compatible approximation at all boundary points,
while the mass matrix .# is the identity operator. Further,
for # the standard five-point (second-order} discrete
Laplacian operator was chosen. With these approximations
all assumptions of Section 2.1 are valid.

The initial value of the discrete vorticity is obtained by
applying the discrete Laplacian to (35). At the boundary Q2
its initial value is set to the exact initial value (i.e., zero). The
exact vorticity remains zero at the boundary, the discrete
approximation however does not. During most of the

581/114/1-10
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simulations described in this section the CFL number,
defined as

Iu»l |¢X|
F — AL A MLEELAN
C I,—max{ + ¥ 4t,

is fixed at the constant value 2. This definition gives a safe
overestimate for Arakawa’s Jacobian. All experiments
are performed on a grid of 257x257 points; ie,
Ax = dy=1/256. Similar behavior of the RK methods has
been observed on grids of 129 x 129 and 65 x 65 points.
At each stage of the RK methods the Poisson problem
involving & is solved with a multigrid technique,

The result obtained with the energy conserving RK dis-
cretization (13), (24) is given in Fig. 1. It shows the familiar
fllamentation and corresponding gradient intensification of
vorticity (McWilliams [12]). As soon as the filaments
cannot be resolved any more, large oscillations occur,
ultimately leading to enstrophy equipartitioning (Bennett
and Haidvogel [37). This is reflected by Fig. 2 which shows
that the maximum norm |g|, of discrete vorticity increases
significantly. The exact inviscid solution keeps this norm
constant, of course. Improvement of the numerical behavior
will be discussed at the end of this section. Note that in
contrast with Fig. 1, the streamfunction field becomes
organized in some relatively smooth and large circulation
cells (not shown here), i.e., energy indeed cascades mainly to
the large scales of motion. _

Results obtained with the classical RK scheme (10) itself
and the enstrophy conserving variant (13), (23) are similar
to the ones shown here. Differences are observed in the
evolution of discrete energy and enstrophy (Fig. 3). At
CFL =2 the intrinsic dissipation of the classical RK scheme
is significant at short lengthscales. This affects enstrophy
much more than energy since the latter is concentrated at
large lengthscales. The vertical axis in the energy plot has
been magnified to make the slight energy decrease visible.
The intrinsic dissipation becomes noticeable as soon as
vorticity filaments (and oscillations) are formed (at 1 2 130).
The energy conserving RK method, of course, fully compen-
sates the slight energy dissipation of the classical scheme,
thereby also reducing dissipation of enstrophy. The
enstrophy conserving RK scheme compensates the large
enstrophy dissipation of the classical scheme with a larger
value of its y” parameter than needed to conserve energy: 7%
is usually larger than y%; see Fig. 4. This may explain the
slight increase in discrete energy observed in the result of
this scheme. It is reminiscent of behavior of the solely
enstrophy conserving space discretization reported by
Arakawa [2].

For all RK schemes shown in Fig. 3, the deviations from
conservation diminish with fourth-order convergence for
decreasing CFL number. For example, at CFL =0.5 the
energy conserving RK scheme shows a reduction in
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enstrophy of less than 0.02 % at ¢t = 460. Furthermore, the y"
parameters behaved as 1+ G(CFL?*); the evolution for
CFL =2 is given in Fig. 4, while at CFL = 0.5 the maximum
deviation from unity is less than 4 x 107, This illustrates
that the semidiscrete system (4), (5) is C® in ¢, and that
high order time discretizations obtain their theoretical order
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of accuracy even though the vorticity is spatially not smooth
at all (Fig. 1).

Both implicit and explicit nonlinear RK methods are
stable independent of the choice of At (actually only the
CFL number is relevant). The question therefore arises if
the explicit nonlinear variants still yield accurate results

FIG. 1. The inviscid vorticity evolution obtained with Arakawa’s Jacobian and the energy conserving nonlinear variant of the classical fourth-order
Runge—Kutta scheme. Resolution is 257 x 257, CFL = 2. The contour interval is }; the zero contour is included.
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Max—-norm of vorticity

3
inviscid
2_ —
19 p=4.39%1077
p=154x10" 08
0 T L
0 500 1000

time

FIG. 2. Evolution of the maximum norm |g|, of vorticity for the
inviscid case given in Fig. | and for two cases with artificial viscosity
added: v=1.54x 10 ®and v=4.39x 107",

when the CFL number is so large that the standard RK
scheme (10) is no longer stable. Repeating the experiment at
CFL =4 and CFL = 8 reveals that this is not the case:

« At CFL=8§ the classical RK scheme increases
enstrophy by more than a factor of 10 after the first four
timesteps. It remains approximately at this level until a fatal
“explosion” occurs at /= 155. Already after the first four

Energyx 10*
0.84
RKV
RKE
RK
0.83 .
0 500 1000
time
Enstrophy
0.14
RKV
RKE
0.07 - r
RK
0 r
0 500 1000
time

FIG. 3. Energy and enstrophy evolution for the inviscid case given in
Fig. 1, obtained with the classical Runge-Kutta scheme (RK), its energy-
conserving variant (RKE), and its enstrophy conserving variant (RK V).
The vertical scale of the energy plot is magnified.
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1.006
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time

FIG. 4. The y}, (dotted line} and y§ parameters of the enstrophy and
energy conserving schemes, respectively, of Fig. 3.

timesteps both nonlinear RK schemes generate a value of
their parameter y” of approximately —0.03. Then, with
alternating signs, each y" rapidly approaches zero. This
means that the schemes end in artificial steady states.
Continuing the integrations at this CFL number is therefore
senseless.

« At CFL =4 the instability of the classical RK scheme is
quite mild; it occurs in the form of bounded bursts especially
in the vorticity extreme values (|q|, <17). The energy
remains fairly constant (relative deviations are within
1.55%), while the enstrophy decreases globally, showing
only some minor bursts; see Fig. 5. The parameters y" of
both nonlinear RK schemes deviate significantly from unity
{Fig. 6). The enstrophy conserving RK scheme displays the
largest deviations. This scheme keeps energy nicely constant
(relative deviations are within 1.07 %) and slightly reduces
the magnitude of the bursts in the vorticity extreme values
(lg] », <14). The energy conserving RK scheme initially
behaves much like the classical scheme, but at r=475 it
increases the magnitude of the vorticity bursts by a factor of
3. The enstrophy increases correspondingly in a peculiar

Enstrophy, CFL=4

0.3 -
RKE
0.2 =
0.1+ L
RK
0 T T
0 500 1000 1500

lime

FIG. 5. Enstrophy evolution for the inviscid case of Fig, 1 at CFL =4,
obtained with the classical Runge-Kutta scheme (RK) and its energy
conserving variant (RKE),
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discretized by the standard five-point discrete Laplacian &,
It can be shown that the resulting semidiscrete system is
monotonous in the sense of (28). The time-stepping is
performed with the “energy conserving” variant (13), (24)
of the classical fourth-order Runge—Kutta scheme. The
increased spatial smoothness of the solution results in
smaller deviations of y% from unity at CFL =2 (less than
3 x 10~ * for the cases described below).
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Figures 2 and 7 show that wusage of ;=1
(v=154x10"%) leads to excessive damping of the
solution. Using a “tuned” value of approximately 0.3
(v=4.39x10"7) gives noticeable oscillations during the
filamentation and is probably already too small, see Figs. 2
and 8. Interestingly, the introduction of the artificial
viscosity postpones the formation of filaments. In the
inviscid case they start to form around ¢=130. In the

FIG. 8. Vorticity evolution at CFL =2 obtained with Arakawa’s Jacobian, the energy conserving Runge-Kutta scheme, and a “tuned” artificial
viscosity v=4.39 x 10", Resolution is 257 x 257. Contour interval is 1/8; zero contour included. The initial condition is that of Fig. 1.
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viscous simulation the “cellular” structure of the initial
condition (shown in the first panel of Fig. 1} is present
roughly up to =320 and is already prone to significant
dissipation (Fig. 7). During the filamentation the discrete
enstrophy starts to decrease sharply, as expected (Pediosky
[137]). Even for a very small viscosity v the filamentation is
postponed. Therefore this effect is probably caused by the
“viscous boundary condition™ (38).

In the viscous simulations the antisymmetry of the exact
solutions with respect to the lines x = 1 and y = { disappears
earlier than in the inviscid simulations. This might be
caused by the larger amplification of rounding errors in
the discrete viscous term. (The discrete systems and the
employed multigrid method are symmetric only in exact
arithmetic.) The viscous simulation remains point-sym-
metric with respect to (x, y)= (4, 3) for a while, see Fig. 8.

At 65 x 65 resolution the viscosity cannot be “tuned”
such that an acceptable non-oscillatory filamentation is
observed. The required viscosity (corresponding to C, < 0.07)
results in an approximately form-preserving decay of the
initial condition’s cellular structure. At a resolution of
129 % 129, a value €, =0.15 is sufficient to obtain results
comparable to Fig. 8. This variation of C, proportional to
1/4x indicates that the Ax? in (37) is a bit too optimistic for
the second-order Arakawa Jacobian. In summary, even
with estimates such as (37) tuning of an artificial viscosity is
tedious.

3. ENO-JACOBIANS

The ENO technique introduced by Harten et al. [9] is
used in an attempt to construct truly robust Jacobians for
equidistant rectangular grids. ENO methods are known
to yield uniformly high order accurate, oscillation-free
approximations of inviscid problems without any tuning,
unlike the methods of the previous section and most other
numerical techniques. However, this desirable property has
been established only for problems where multiple discon-
tinuities are well separated. It is unclear if the method is able
to cope with the indefinite steepening and narrowing of
vorticity filaments in inviscid two-dimensional turbulence.

Here the grid-aligned ENO variant of Shu and Osher
[17] is applied to the vorticity equation. This variant is easy
to apply in the multi-dimensional case for which it obtains
an arbitrarily high order of accuracy. Two types of high
order ENQ-Jacobians have been considered, corresponding
to the advection and conservation (flux) forms of the
vorticity equation. As usual with ENO schemes the
accuracy of an “rth order” ENO-Jacobian may degrade to
(r — 1)th order at local extremes of the vorticity or any of its
derivatives.

In all results for test problem (35) the employed discreti-
zation of the streamfunction equation (2) is identical to that
used in the previous section, i.e., the second-order five-point
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Laplacian is used again. Consequently the differences
between the results of this and the previous section are
mainly due to the discretization of the Jacobian. The CFL
number definition of the previous section has been used as
well. The time discretization is the third-order TVD
Runge-Kutta scheme as given in Shu and Osher [17],
which will not introduce oscillations if the space discretiza-
tion does not.

3.1. Flux Form ENO-Jacobians

The starting point is the inviscid unforced vorticity
equation (1) in conservation form,

8q ¢ G,
dq_ oug g _

o ax dy (39)
where
_ W _ oy
U= N V= E (40)

The spatial domain £ is again covered by the equidistant
grid {(x;, »,})} = {(i 4x, j 4¥)}. Gridpoint values of the
fluxes uwg and vg are obtained from the nodal values
g, ;~q(x;, y;,¢) and nodal values of the velocity com-
ponents. The latter are approximated by standard fourth
order central differences of (40), for example,

_ Vej2— 8%, + 8 VW
U, ;j = ( 124y )’ 41

except in gridpoints adjacent to the boundary where
asymmetric fourth-order differences have been used. For
example, if the boundary segment y =0 corresponds with
j=1,thenatj=2:

_ _34’:‘,1—10%,2‘*'18‘.&:.3_6'!’5,44'%,5)
Wia= —( 124y . (42)

The normal flux components at the boundary are always
zero; therefore the boundary values of ¢ itself are not needed
for the determination of the g-evolution in the interior. Note
that the second-order discrete streamfunction equation does
not depend on these boundary values either. The general
grid-aligned conservative approximation of (39) at interior
gridpoints is

dqﬂ' 1 x x
T‘*‘E (hi+1/2,j"hs—1/z,j)

1
+—— A 1p— ) =0

o (43)
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t=74, ENO-LLF
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t=139, ENO-A-LF

FIG. 10. Vorticity obtained with the fourth-order ENO-LLF and centrally biased ENO-A-LF Jacobians at low resolution (65 x 65). CFL =0.3.
Contour interval is §; zero contour included. The initial condition is that of Fig. 1.

global Lax-Friedrichs modification is made. This amounts
to (the v-term is treated similariy)

1 7,
+§(uz’,j_ax)_q 5

N
+a%) pw
ij

q
ox|,;; (43)

ij

where u,; is again evaluated as in (41), (42), and the
g-derivatives in Shu and Osher’s {171 ENO way. Each of
these derivatives is associated with a sign-definite advection
velocity if
o =f|u| o with f=1.

Again 8 has been set to 1.1 in the tests described below. To
distinguish them from the ENO-Jacobians of the previous
section, methods based on (44) will be called ENO-A
Jacobians. Note that ENQO-A Jacobians need boundary
values of 4. In general these can be obtained f{rom a
pointwise discrete approximation of (44) at the boundary,
in which only the tangential derivative'is retained. For the
present test problem with initial condition (35) this yields
the exact value (38).

Both fourth- and fifth-order ENO-A-LF Jacobians show
oscillation-free behavior in the low-resolution (65 x 65)
simulation. Unlike the fourth-order ENO-LLF Jacobian,
they preserve symmetries in the solution well up to ¢~ 200,
see Fig. 10, and have no problems at the boundary. They are
stable and nonoscillatory for CFL numbers up to 0.5, If the
“central bias” of Fatemi et al. [6] is used in the stencil

Energy><l()4

0 500
time

Enstrophy

0.07

0 500

time

FIG. 11. Discrete energy and enstrophy evolution at low resolution
(65 x 65) for centrally biased ENO-A-LF Jacobians of orders r=3,4; 5.
CFL =0.5. :
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construction for the derivatives in (45), then the methods
are stable also for slightly larger CFL numbers. However, at
higher resolutions this is no longer the case.

Increasing the order of the ENO-A-LF Jacobian to five,
significantly reduces its intrinsic dissipation, while stability
is retained, cf. Fig. 11, One might be tempted to conclude
that a further increase in order would be even more benefi-
cial. Unfortunately, a sixth-order ENO-A-LF Jacobian
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produces small spikes near the boundary (|g| ., = 3), which
destroy the antisymmetry of the solution at an carly stage.
The failure of uniformly sixth and higher order ENG
schemes is investigated further by Walsteijn [19]: at such
high orders problems near boundaries are unavoidable.

A high resolution result (257 x 257) obtained with the
fifth-order centrally biased ENO-A-LF Jacobian is given in
Fig. 12. The ENO-A-LF Jacobian clearly reproduces all

FIG. 12. Vorticity obtained with the centrally biased fifth-order ENO-A-LF Jacobian. Resolution is 257 x 257, CFL =0.5. Contour interval is ; zero

contour included. The initial condition is that of Fig. 1.
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Numerical schemes that conserve fully discrete energy
and/or enstrophy in the inviscid unforced case are guaran-
teed unconditionally stable. Explicit schemes with this
property can be constructed by combining existing
conscrvative space discretizations with new nonlinear
Runge-Kutia time discretizations. Generalizations of the
nonlinear Runge-Kutta scheme of Dekker and Verwer (5]
conserve enstrophy. A further extension leads to energy
conserving nonlinear Runge-Kutta schemes. An extension
attempting to conserve both energy and enstrophy in the
time discretization failed, because it is ill-conditioned in
practice.

In tests, the enstrophy conserving nonlinear variant of
the classical fourth-order Runge-Kutta scheme performs
slightly better than both the energy conserving variant and
the non-conservative classical scheme itself. The main
advantage is that the nonlinear modifications vield
unconditional stability in an explicit scheme. However, if
such explicit schemes are applied at very large CFL
numbers (for which the standard scheme “explodes”), then
they introduce large errors and may lead to an artificial
steady state. Fortunately, the accuracy of these schemes can
be monitored by inspecting the deviations of their
y-parameters from unity, and reducing the timestep such
that |1 — 7| is of the order of the required relative accuracy.

Although nonlinear stability is guaranteed, these schemes
still require the trial and error tuning of artificial viscosity to
suppress spatial oscillations in nearly inviscid simulations
(as they are based on symmetric space discretizations).

The ENO technique of Shu and Osher [17] has been
applied to construct new grid-aligned ENO Jacobians. Ali
investigated ENQ Jacobians need to be stabilized by local
or global Lax-Friedrichs (LLF or LF, respectively)
modifications. ENO-LLF Jacobians based on the conserva-
tion form of the vorticity equation then still suffer from
instabilities at the domain boundary and interior stagnation
points, The best performing Jacobian is the ENQ-A-LF
Jacobian, based on the advection form of the vorticity
equation. (Ironicaily, this method does not conserve any
quantity,) It is the only ENO Jacobian that produces
nonoscillatory, spike-free results. However, this 1s true only
if its order of accuracy is not higher than 5, otherwise spikes
will occur near the closed domain boundary. Similar order
restrictions have been established (theoretically and from
numerical experiments) by Walsteijn [19] for ENO techni-
ques applied to problems with an inflow boundary. With the
above order limitation, ENQ-A-LF Jacobians enable
“inviscid” simulations without the manual introduction or
tuning of an artificial viscosity.
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